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Abstract

This study investigates transient electroosmotic flow in a rectangular curved microtube in which the fluid is driven by the applic
an external DC or AC electric field. The resultant flow-field evolutions within the microtube are simulated using the backwards-Eu
stepping numerical method to clarify the relationship between the changes in the axial-flow velocity and the intensity of the applie
field. When the electric field is initially applied or varies, the fluid within the double layer responds virtually immediately, and the axia
velocity within the double layer tends to follow the varying intensity of the applied electric field. The greatest net charge density
the corners of the microtube as a result of the overlapping electrical double layers of the two walls. It results in local maximum or m
axial velocities in the corners during increasing or decreasing applied electric field intensity in either the positive or negative dire
the fluid within the double layer starts to move, the bulk fluid is gradually dragged into motion through the diffusion of momentu
the double layer. A finite time is required for the full momentum of the double layer to diffuse to the bulk fluid; hence, a certain ph
between the applied electric field and the flow response is inevitable. The patterns of the axial velocity contours during the transien
are investigated in this study. It is found that these patterns are determined by the efficiency of momentum diffusion from the doub
the central region of the microtube.
 2004 Elsevier Inc. All rights reserved.

Keywords:Transient; Electroosmotic flow; DC or AC electric field; Momentum diffusion
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1. Introduction

The term “electroosmotic flow” refers to fluid flow in
duced by an externally applied electric field along a char
surface. Electroosmotic flow is afundamental electrokineti
phenomenon and has found a wide variety of practical ap
cations. The recent rapid development of microfluidic sys-
tems designed for biological and chemical “laboratories
a chip” has prompted the search for dramatic improvem
in the efficiency and throughput of these systems. It is o
necessary to drive fluids from one part of a device to anot
to control the fluid motion, to enhance mixing, or to separ
fluids. Electroosmosis provides an attractive means of
nipulating liquids in microdevices. One advantage of us
this electrokinetic phenomenon is that the voltages applie

* Fax: +886-6-597-7570.
E-mail address:wjluo@cfd.es.ncku.edu.tw.
0021-9797/$ – see front matter 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcis.2004.06.017
the device reservoirs can both control the bulk fluidic tra
port and cause the separation of the different componen
a sample due to their differing electrophoretic mobility.

The mathematical model of electroosmotic flow in an
trafine slit was formulated by Burgreen and Nakache[1] in
1964. Recently, Arulanandam and Li[2] presented a two
dimensional mathematical model for electroosmotic flow
a rectangular microchannel. Patankar and Hu[3] and Yang
et al.[4] used numerical methods to simulate electroosm
flow at the intersection of a cross-microchannel durin
chemical-sample injection procedure. Bianchi et al.[5] ap-
plied the finite element method to simulate electroosm
flow at a microscale T-junction. They showed that the
locity distribution of flow at the intersection is affected
the relative zeta potentials and channel widths. Mitch
et al. [6] developed meshless analysis based on the fi
cloud method to simulate electroosmotic flow on vario
geometries. Their results indicated that the linear app
imation of the Poisson–Boltzmann equation for large z

http://www.elsevier.com/locate/jcis
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potential still can predict the plug velocity accurately. Ya
et al. [7] used numerical methods to concern the entra
effect in the microchannel by solving additional Nern
Planck equations for ionic concentration.

Time-periodic electroosmotic flows and alternating-c
rent electroosmosis have attracted considerable academ
attention. Investigation of transient phenomena of electr
motic flow is important for biochip operation and separat
efficiency. Soderman and Jonsson[8] and Santiago[9] have
presented a theoretical framework describing the behavi
the transient electroosmotic flow under the Debye–Hü
linear approximation. Oddy et al.[10] presented an analyt
flow-field model for an axially applied AC electric field
an infinitely wide microchannel and demonstrated exp
mentally a series of schemes for enhanced species m
in microfluidic devices. Dutta and Beskok[11] developed an
analytic model for an applied sinusoidal electric field us
a nonlinear Poisson–Boltzmann double-layer distribut
Studer et al.[12] established a fabrication technique wh
allowed the realization of microfluidic devices incorpor
ing electrodes with smaller feature sizes and demonstr
that the resulting devices were capable of supporting suc
novel functionalities as the injection, mixing, and separa
of biomolecules by means of AC electrokinetic pumpi
Green et al.[13] applied a nonuniform AC electric fiel
to an electrolyte using coplanarmicroelectrodes to genera
steady fluid flow. The flow was driven at the surface of
electrodes so that it moved in a plane normal to the elect
surface. The impedance of the double layer on the electr
and the potential drop across the double layer have
studied experimentally and theoretically using linear an
sis. Erickson and Li[14] developed an analytical solutio
via a Green’s function formulation, for AC electroosmo
flow through a rectangular microchannel for the case of
nusoidal applied electric field.Their results indicated tha
the steady time-periodic velocity profile is characterized b
the ratio of the period of oscillation to the time scale for v
cous diffusion, by the surface zeta-potential distribution,
by the channel aspect ratio.

The geometry of a microfluidic device is commonly ch
acterized by a rectangular curved microtube. The flow-fi
conditions within such a microtube have a significant
fluence upon the performance of the device when it c
ducts the separation, extraction, and mixture of chemica
or biological components. The present study applies a
merical approach to investigate time-periodic electroosmot
flow in a rectangular curved microtube. The investigati
of transient behavior provide detailed insight into the ch
acteristics of electroosmotic flow and are consequentl
great importance in understanding and enhancing bio
operation. A numerical method is adopted in which the tr
sient phenomena of electroosmotic flow are simulated
ing the Debye–Hückel linear approximation. Through
application of the backwards-Euler time-stepping meth
a numerical solution is obtained for the stream-funct
and vorticity-transport equations, which govern the vel
s

ity fields of the electroosmotic flow. The transient behav
of the impulsively generated electroosmotic flow is then
cussed in terms of the influence of the applied DC or
electric field.

2. Governing equations and boundary conditions

This study considers a rectangular curved microtube
the same height and width of 30 µm. The tube is filled w
an incompressible Newtonianelectrolyte of uniform dielec
tric constantε and viscosityµ. It is assumed that this flui
is in a stationary state initially. A fully developed flow fie
is then established in which the flow is driven by an app
DC or AC electric field. Since the characteristic length o
the microtube is on the order of magnitude of 10 µm,
interaction of the fluid and the wall is significant and m
therefore be considered in the theoretical model. A rev
of the related literature reveals that a theoretical mode
the microchannel has been widely applied in previous s
ies. This model is described by the following set of eq
tions: the Poisson–Boltzmann equation, the Laplace e
tion, and the Navier–Stokes equation, which comprises
body force terms from the Guoy–Chapman model. In
plying this model, it is convenient to transform the toroi
coordinate system(R,Y, θ) to the related coordinate syste
(X,Y,Z), whereX = R − C, dZ = C dθ , andC is the ra-
dius of curvature, as shown inFig. 1.

2.1. Double-layer field

When the liquid in the tube comes into contact with
solid wall, an interfacial charge is established. This cha
causes the free ions in the liquid to rearrange to form
thin region with nonzero net charge density. This regio
commonly referred to as the electrical double layer (ED
According to electrostatic theory, the electrical potential dis
tribution in the EDL region is governed by the Poisso
Boltzmann equation[15], which is expressed as

1

(x + c)

∂

∂x

[
(x + c)

∂ψ

∂x

]
+ ∂2ψ

∂y2 = 2n0ze

ε
sinh(zeψ/kbT ),

Fig. 1. Geometry of curved microtubeand associated coordinate syste
The directions of velocity (u,v,w) are defined in the figure.
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whereε is the dielectric constant of the fluid medium,z is
the valence,e is the charge of an electron,n0 is the bulk
electrolyte concentration,kb is the Boltzmann constant, an
T is the temperature. Nondimensional quantities (denote
by asterisks) can be defined as

x∗ = x

A
, y∗ = y

A
, ψ∗ = zeψ

kbT
.

The dimensionless nonlinear Poisson–Boltzmann distr
tion equation is then given by

(1)
1

(x + β)

∂

∂x

[
(x + β)

∂ψ

∂x

]
+ ∂2ψ

∂y2 = κ2 sinh(ψ),

whereψ is the nondimensional double-layer potential,κ =
A × K is the nondimensional double-layer thickness,K =
(2n0z

2e2/εε0kbT )1/2 is the Debye–Hückel parameter,A is
the height of the rectangular cross section of the tube,
curvature ratioβ = C/A. (Note that the asterisks are deli
erately omitted in these equations.)

2.2. Electroosmotic flow field

When an external electric field is applied, the liquid flo
induced by electroosmosis is governed by the general inc
pressible Navier–Stokes equation[11,16],

(2)ρ
∂V

∂t
+ ρ(V · ∇)V = −∇P + F + µ∇2V.

If the gravity effect is neglected, the body force,F , occurs
only as a result of the action of the applied electric field
the free ions within the EDL. This body force induces a b
fluid motion generally referred to as electroosmotic flow.

The following nondimensional quantities (denoted by as
terisks) can be introduced: nondimensional velocity:u∗ =
u/(υ/A) or v∗ = v/(υ/A), nondimensional time:t∗ =
t/(A2/υ), nondimensional pressure:p∗ = (p − pref)/

(ρυ2/A2), and nondimensional frequency:Λ∗ = A2Λ/υ,
whereυ is the kinetic viscosity of the electrolyte,t is time,
and Λ is the frequency of the applied electric field; i.
Λ = 2πf . Hence, the continuity equation and Navier–Sto
equation ofEq. (2)can be rewritten as

(3a)
1

(x + β)

∂

∂x

[
(x + β)u

] + ∂v

∂y
= 0,

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− w2

(x + β)
+ u

(x + β)2 + ∂p

∂x

− 1

(x + β)

∂

∂x

[
(x + β)

∂u

∂x

]
− ∂2u

∂y2

(3b)− Gx sinhψ

(
∂ψ

∂x

)
= 0,

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ ∂p

∂y
− 1

(x + β)

∂

∂x

[
(x + β)

∂v

∂x

]

(3c)− ∂2v

2
− Gx sinhψ

(
∂ψ

)
= 0,
∂y ∂y
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ uw

(x + β)
+ w

(x + β)2 + β

(x + β)

∂p

∂z

− 1

(x + β)

∂

∂x

[
(x + β)

∂w

∂x

]
− ∂2w

∂y2

(3d)− Gx sinhψ

(
β

(x + β)

∂φ

∂z

)
= 0,

whereGx = 2n0kbT/(ρυ2/A2) and φ is electrical poten-
tial. The magnitude of the axial pressure gradient is v
small in comparison with that of the body force in a mic
tube. Hence, the axial pressure gradient can be neglect
Eq. (3d).

The stream function,S, is defined as

(4)u = β

(x + β)

∂S

∂y
, v = − β

(x + β)

∂S

∂x
.

The continuity equation can then be satisfied by subst
ing Eq. (4)into Eq. (3a). The pressure and body force term
P andF , can be eliminated fromEqs. (3b) and (3c)by cross-
differentiation, i.e., by taking the curl of the two-dimension
momentum equation. The vorticity-transport equation ca
derived as

(x + β)
∂Ω

∂t
− β

∂S

∂y

∂Ω

∂x
− β

∂S

∂x

∂Ω

∂y
+ 2w

(x + β)

β

∂w

∂y

− Ω
2β

(x + β)

∂S

∂y

(5)−
[

∂

∂x
(x + β)

∂Ω

∂x
+ (x + β)

∂2Ω

∂2y

]
= 0.

Furthermore, the vorticity,Ω , is given by

(6)

Ω + 1

(x + β)

∂

∂x

[
(x + β)

∂S

∂x

]
+ ∂2S

∂2y
− β

(x + β)

∂S

∂x
= 0.

For pure electroosmotic flow, the magnitude of the ax
pressure gradient,∂p/∂z, is very small in comparison with
that of the body force,F , in a microtube. Hence, the axi
pressure gradient,∂p/∂z, in Eq. (3d)can be neglected in th
case of fully developed flow. The zeta potential distribut
in the EDL can be obtained by solvingEq. (1). Substitu-
tion of the calculated electric potential intoEq. (3d)yields
the transient electroosmotic flow under an applied elec
field by solving the simplified equation set ofEqs. (3d),
(5), and (6). By taking the cross-differentiation operatio
the total number of dependent variables is reduced to
three,(S,Ω,w), and the body force terms from the Guo
Chapman model inEqs. (3b) and (3c)can be discarded
The boundary conditions of zeta potential at four wa
are−75 mV, and its corresponding dimensionless valu
ψ = −3. Hence, the boundary conditions at the four wa
of the microtube are given as follows.

(1) At left and right walls:

S = 0, Ω + ∂2S

∂2x
= 0, w = 0, ψ = −3.
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(2) At upper and lower walls:

S = 0, Ω + ∂2S

∂2y
= 0, w = 0, ψ = −3.

3. Numerical method

The present numerical method employs the backwa
Euler time-stepping method to identify the evolutions o
flow driven by an applied DC or AC electric field. The com
putational domain is discretized into 121× 121 nonequally-
spaced grid points in bothX- andY -directions. The calcu
lated solutions have been carefully proved to be indepen
of computational grid points and time step. The govern
equations presented inEqs. (3d), (5), and (6)are discretized
by central differences of a second order to form a system
nonlinear algebraic equations,

(7)H(S,t) = 0,

whereS is the solution vector andt is the dimensionles
marching time step.

The solution vector for various time-levels can be
tained via a sequence of iterations,[S(υ)(t)], which is de-
fined by

(8a)S(0)(0) ≡ initial state,

HS

(
S(υ),t

)[
S(υ+1)(t + t) − S(υ)(t + t)

]
(8b)= −H

(
S(υ),t

)
, whereυ = 0,1,2, . . . .

In Eq. (8b), HS is the Jacobian matrix ofEq. (7), andt is the
nondimensional time.

A convergence criterion of[S(υ+1)(t + t) − S(υ)(t +
t)]2/S(t)2 < 10−16 is used to identify the convergence
the iteration process. Whether or not the iteration actu
converges and, if it does, its convergence efficiency, are
determined by the accuracy of the initial estimate. An ap
priate initial estimate ensures that the iteration will conve
efficiently. An effective method of obtaining good initi
estimates is to employ a Taylor expansion of a calculate
convergent solution withrespect to the parametert ,

(9)S(0)(t + t) = S(t) + tSt (t).

Equation (7)is used to obtainSt , which satisfies

(10)HS(S,t)St = −Ht(S,t).

The method described inEqs. (8), (9), and (10)is known
as the backwards-Euler time-stepping method. Since
method employs second-order accuracy in time, it is n
essary to provide two initial solutions at the beginning of
time-stepping calculation. One of these solutions can be
tained from the initial state, while the other is obtained us
the same numerical method, but with a first-order finite
ference in time. Before the iteration algorithm is execu
to obtain the convergence solution of the next time le
t

the predictor step inEqs. (9) and (10)is applied to gener
ate accurate estimates of the solution. Hence, the calculatio
algorithm is extremely effective and generally conver
quadratically. For the detailed algorithm of the numer
method please refer to Yang and Luo[17].

4. Results and discussion

4.1. Transient electroosmotic flow induced by DC electr
field

The present study investigates transient electroosm
flow in a curved microtube with a curvature ratio ofβ = 50,
a length and width of 30 µm, and an aspect ratio of 1. The
evant parameters of the microtube are presented inTable 1.
The microtube is filled initially with a stationary fluid, whic
is then driven through the microtube by the initial impulse

Table 1
Typical values of the relevant quantities

A Height of the rectangular curved tube 30 µm
β Curvature ratio 50
C Radius of curvature 1.5 mm
µ Viscosity of fluid 0.90× 10−3 N s m−2

ρ Density of fluid 103 kg m−3

ζ Concentration of ions 10−6 M
ε Dielectric constant 78.3
ε0 Permittivity of vacuum 8.854× 10−12 F m−1

e Charge of an electron 1.6021× 10−19 c
z Valence 1
n0 Bulk electrolyte concentration 6.022× 1020 m−3

kb Boltzmann constant 1.38× 10−23 J K−1

T Absolute temperature 298.16 K
ψ Double-layer potential −75 mV
Λ∗ Nondimensional frequency of

the applied AC electric field
1

Fig. 2. Variation in axial velocity of flow at transverse center of microtu
over time. Note that the flow is driven through the microtube under
influence of an initial impulse supplied by the applied DC electric field.
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Fig. 3. Evolution of axial-velocity contours during period of transient response under influence of impulse supplied by applied DC electric field.
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provided by the applied DC electric field. The dimensio
less intensity of this electric field along the axial directi
is ∂φ/∂z = 52.49. Fig. 2 presents the variation in the axi
velocity of the flow at the transverse center of the mic
tube over time. When the electric field is initially applied, t
fluid within the double layer responds virtually immediate
but the bulk fluid in the microtube remains stationary. Ho
ever, as the fluid within the double layer starts to move,
bulk fluid is gradually dragged into motion through the d
fusion of momentum from the double layer. A finite time
required for full momentum diffusion from the double lay
to the bulk fluid, and hence the flow in the central reg
of the microtube evolves through a period of transient
sponse before attaining a steady-state flow.Fig. 2 indicates
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Fig. 3. (Continued).
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that the dimensionless transient response time is app
matelyt = 1.36.

Fig. 3 illustrates the evolution of the axial velocity co
tours during the period of transient response. Initially,
impulse provided by the applied DC electric field drives
fluid within the double layer in the axial direction, and t
axial velocity contours adopt a ringlike form. The inters
-tion of two walls causes overlapping of the double layer,
hence a greater net charge density accumulates in eac
ner of the microtube. These net-charge-density peaks c
the particles in the corners to respond rapidly to the in
ence of the applied electric field. Hence, as time elapses
fluid within the double layer rapidly accelerates in the ax
direction. It is noted that the maximum velocity occurs at



W.-J. Luo / Journal of Colloid and Interface Science 278 (2004) 497–507 503

-

yer
ax-
e

ac-
ions
.
e

rom
n
zero

-
ear
itive
lly
u-

oxi-

c

gh
di-
by
e
ial

ro-
the
n
fol-
.,

ria-
ld

r
mi-

-

nite
to
ase
nse
dy-
that
for
ain
en-

n-

ld
ves
an

rm,
xial
es,
en
ied
curs

of

nd
ow
ble
, at
ds
ube
er

loc-
aks
Fig. 4. Axial velocity distribution alongX-coordinate during period of tran
sient response fromt = 0 to t = 1.36.

corners of the microtube. The momentum of the double la
gradually diffuses to the central region, and therefore the
ial velocity contours assume a C-like form. As further tim
elapses, the contours with higher axial velocity gradually
cumulate near the inner side. Under steady-state condit
the axial-velocity contours demonstrate a stratified form

Fig. 4 indicates the axial velocity distribution along th
X-coordinate during the period of transient response f
t = 0 to t = 1.36. During this period, the axial velocity i
the transverse center of the microtube increases from
to its maximum value. Under the influence of the initial im
pulse provided by the applied DC electric field, the fluid n
the inner and outer walls accelerates rapidly in the pos
axial direction. However, the bulk fluid is only gradua
dragged into motion in the positive direction by the diff
sion of momentum from the double layer. Att = 1.36, the
axial velocity in the transverse section is equal to appr
mately 0.057.

4.2. Transient electroosmotic flow induced by AC electri
field

In this particular investigation, the fluid is driven throu
the microtube by an applied AC electric field. The
mensionless electric field within the microtube is given
∂φ/∂z = 52.49 sin(2πt). Fig. 5presents the variations in th
applied electric field along the axial direction and the ax
velocity of the flow in the transverse center of the mic
tube over time. The amplitude and the cycle period of
applied AC electric field are52.49 and 1, respectively. I
general, it can be seen that the axial velocity tends to
low the varying intensity of the applied electric field; i.e
the flow accelerates as the intensity of the applied electric
field increases and decelerates asthe intensity of the applied
electric field decreases. However, it is noted that the va
tion in the flow velocity lags behind that of the electric fie
by a phase shift of approximately (π/2)◦. When the elec-
tric field is initially applied,the fluid within the double laye
starts to move, but the fluid in the central region of the
,

Fig. 5. Variations in applied AC electric field and axial velocity of electroos
motic flow in transverse center of microtube over time.

crotube remains stationary. As described previously, a fi
time is required for the momentum of the double layer
diffuse to the bulk fluid, and hence a certain degree of ph
shift between the applied electric field and the flow respo
is inevitable. Finally, the central-region flow attains a stea
state condition, in which the change in velocity matches
of the applied electric field. It can be shown that the time
the velocity in the central region of the microtube to att
a steady-state condition is approximately 0.7 of the dim
sionless transient response time.

Fig. 6 presents the evolution of the axial velocity co
tours in the transverse section during the period fromt = 1
to t = 1.5. At t = 1, the intensity of the applied electric fie
is zero, and the flow in the center of the microtube mo
at its maximum velocity in the negative direction. It c
be seen that the preceding negative electric field intensity
causes the axial velocity contours to adopt a ringlike fo
in which the innermost contours indicate the highest a
velocity in the negative direction. As further time elaps
the fluid particles within the double layer are rapidly driv
in the positive direction under the influence of the appl
AC electric field. Since the peak net charge density oc
at the corners of the microtube, the maximum velocity
the flow also takes place at each corner. Att = 1.1, the
flow velocity near the four walls continues to increase, a
the resulting momentum diffusion causes the region of fl
with a positive velocity to spread gradually from the dou
layer toward the central region of the microtube. Finally
t = 1.25, the region of flow in the positive direction expan
to the point where it occupies almost the entire microt
profile. Meanwhile, the velocity of the flow in the cent
of the tube decreases to zero, as shown inFig. 6. As the
elapsed time increases further,the intensity of the electric
field gradually decreases, and hence the positive axial ve
ity of the flow within the double layer decreases. The pe
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Fig. 6. Evolution of axial-velocity contours in transverse section during period fromt = 1 to t = 1.5 under influence of applied AC electric field.
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in the net charge density cause particles in the corners t
spond rapidly to the change in the applied AC electric fie
and consequently there is a reduction in the local maxim
velocity at each corner. Meanwhile, inertia forces cause th
axial velocity of the flow in the center of the microtube
continue to increase in the positive direction. Att = 1.4, the
-velocity of the bulk flow in the positive direction reaches a
almost equal value, while the axial flow at the corners attain
a local minimum value. Att = 1.45, the positive intensity
of the applied AC electric field continues to decrease,
momentum diffusion causes the region of flow with slow
positive axial velocity to expand toward the central regi
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Fig. 6. (Continued).
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At t = 1.5, the axial velocity in the central region attains
maximum value. Att = 1.5, it is noted that the axial-flow
velocity contours strongly resemble those evident att = 1 in
terms of their shape. However, it is important to note that
direction of the axial velocity is reversed. During the seco
half of the cycle, fromt = 1.5 to t = 2, the variation of the
applied AC electric field intensity is the mirror image of t
variation described fromt = 1 to t = 1.5, and accordingly
the axial flow velocity in the central region of the microtu
reverses from a positive direction to a negative direction.
sentially, the evolution of the axial velocity contours duri
the cycle fromt = 1.5 to t = 2 follows the same process a
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Fig. 7. Axial velocity distribution alongY -coordinate during period from
t = 1 to t = 1.5.

Fig. 8. Axial velocity distribution alongX-coordinate during period from
t = 1 to t = 1.5.

that described fort = 1 to t = 1.5. However, it is noted tha
the axial flow directions are reversed. Consequently, att = 2,
the axial velocity contours are identical to those obser
at t = 1.

Figs. 7 and 8indicate the axial velocity distribution alon
the Y -coordinate andX-coordinate during the period from
t = 1 to t = 1.5. The axial velocity in the transverse cen
of the microtube gradually increases from its minimum va
to its maximum value during this period. It is noted that
intensity of the applied AC electric field gradually increa
from t = 1 to t = 1.25, and then decreases fromt = 1.25 to
t = 1.5. Consequently, the fluid near the upper and lo
walls accelerates rapidly in the positive direction betw
t = 1 andt = 1.25, and then decelerates in the positive
rection fromt = 1.25 to t = 1.5. However, the movement o
fluid within the double layer only gradually drags the bu
fluid into motion in the positive direction, since the mome
tum diffusion requires a finite time to take effect. Due to
centrifugal effect, the magnitude of axial velocity near
Fig. 9. Axial velocity distribution alongY -coordinate during period from
t = 1.5 to t = 2.0.

Fig. 10. Axial velocity distribution alongX-coordinate during period from
t = 1.5 to t = 2.0.

inner wall (X = −1) is greater than that near the outer w
(X = 1) at different instants, as shown inFig. 8.

Figs. 9 and 10indicate the axial velocity distributio
along theY -coordinate andX-coordinate during the perio
from t = 1.5 to t = 2. During this period, the axial velocit
in the transverse center of the microtube gradually decre
from its maximum value to its minimum value. The intens
of the applied AC electric field gradually increases betw
t = 1.5 and t = 1.75 and then decreases fromt = 1.75 to
t = 2.0 in the negative direction. Consequently, the fluid n
the upper and lower walls accelerates rapidly in the ne
tive direction fromt = 1 to t = 1.75 and then decelerates
the negative direction fromt = 1.75 tot = 2.0. However, the
bulk fluid is only gradually dragged into motion in the ne
ative direction due to the delayassociated with the mome
tum diffusion from the double layer. Due to the centrifu
effect, the magnitude of axial velocity near the inner w
(X = −1) is greater than that near the outer wall (X = 1) at
different instants, as shown inFig. 10.
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5. Summary

The flow-field conditions within the electrokinetic m
crochannel of a microfluidic device have a significant infl
ence upon the performance of the device in the separa
extraction, and mixing of chemical or biological comp
nents. Therefore, it is essential to develop a thorough
derstanding of the evolution of these flow-field conditio
when such a device is designed. The present study has
sidered the case of transient electroosmotic flow in a
tangular curved microtube in which the fluid is driven
an external DC or AC electric field. The resultant flow-fie
evolutions within the microtube have been investigated
ing the backwards-Euler time-stepping numerical metho
clarify the relationship between changes in the intensity
the applied electric field and the distribution of the fluid flo
in the axial direction.

For the case of transient electroosmotic flow with an
ternal DC electric field, initially, the impulse provided by th
applied DC electric field drives the fluid within the doub
layer in the axial direction, and the axial-velocity conto
adopt a ringlike form. The greater net charge density in
corners causes the particles in the corners to respond ra
to the influence of the applied electric field, and the m
imum velocity occurs at the corners of the microtube. T
momentum of the double layer gradually diffuses to the c
tral region, and therefore the axial-velocity contours assu
a C-like form. As further time elapses, the contours w
higher axial velocity gradually accumulate near the in
side. Under steady-state conditions, the axial-velocity c
tours demonstrate a stratified form.

This study has also considered the application of a s
soidal electric field to the flow in the curved microtube an
has investigated the relationship between the periodic elec
tric field and the corresponding evolution of the axial-flo
velocity. The results indicate that the flow in the center
the microtube initially exhibits a transient response wh
the electric field is applied and then attains a steady-s
condition. The greater net charge density in the corner
the microtube results in local maximum or minimum a
ial velocities in the corners during increasing or decreas
,

-

y

applied electric field intensity in either the positive or ne
tive direction. It has been shown that the axial-flow veloc
tends to follow the varying intensity of the applied AC ele
tric field. When the electric field is initially applied, a certa
phase shift between the applied electric field and the flow
sponse is inevitable because a finite time is required for
momentum of the double layer to diffuse to the bulk flu
The evolution process of the axial velocity contours durin
half cycle follows the same process as for the preceding ha
cycle. However, the axial flow directions are reversed.
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